Рис. 12. Капельница
28
ми времени между ними. Можно применить прибор, в котором через равные промежутки времени создаются короткие импульсы тока, вызывающие яркие вспышки света в специальной лампе. Непрозрачный диск с прорезью, вращающийся перед непрерывно горящей лампой, также создает стробоскопическое освещение.
Пусть, например, изучается движение шарика, скатывающегося по желобу. Если производить опыт в темноте и освещать шарик стробоскопом, то шарик будет виден только в тех положениях, в которых его освещает вспышка. Если вдоль желоба расположена линейка с делениями, то она также окажется освещенной, и можно зарегистрировать те
Рис. 13. Шарик, скатывающийся по желобу, видимый при стробоскопическом освещении (по фотографии)
положения шарика относительно линейки, которые ом занимал в моменты вспышек (рис. 13). Чтобы зарегистрировать все положения шарика, получающуюся картину можно сфотографировать, открыв затвор фотоаппарата на все время  движения
шарика.
При помощи стробоскопа можно увидеть одновременно ряд отдельных положений предмета, и не пользуясь фотографией. Если за 0,1 секунды происходит несколько последовательных вспышек стробоскопа, то, благодаря свойству глаза сохранять зрительное впечатление, мы будем видеть несколько последовательных положений шарика. Сходную картину мы увидим, размахивая блестящей палочкой, освещенной лампой дневного света или другой газоразрядной лампой: такие лампы, питаемые переменным током, дают сто вспышек в секунду, что позволяет видеть одновременно целый ряд последовательных положений палочки. Можно также увидеть несколько положений руки, размахивая ею в темном кинозале во время демонстрации фильма (24 вспышки в секунду). далее 


Используются технологии uCoz